Math 113-012, Exam 3	Name
28-30 October 2010	Row
D. G. Wright	Show work. Each problem or part of problem is worth 5 points.

- 1. Find the surface area when the line segment from (4,0) to (16,5) is rotated about the y- axis.
- 2. The curve $y = \sqrt{4 x^2}, -1 \le x \le 1$, is rotated about the x-axis. Find the area of the resulting surface.
- 3. Find the centroid of the following system consisting of a square and an isosceles triangle.

4. Find the centroid of the region between the two triangles in the x-y plane. You may use either Hint 1 or Hint 2. Hint 1: The area can be found as the difference of two areas. In a similar manner, the moment about the x-axis can be found as the difference of two moments. Hint 2: Use the Theorem of Pappus.

5. Evaluate the following limits if they exist. If the limit does not exist, so state.

(a)
$$\lim_{n \to \infty} \frac{1}{n} =$$

(b) $\lim_{n \to \infty} \left(1 + \frac{5}{n} \right)^n =$ _____
(c) $\lim_{n \to \infty} \frac{\sqrt{n^5 + 2n^3 + 5}}{n^3} =$ _____

6. Define
$$\sum_{n=1}^{\infty} a_n = L$$
.

7. What is the hydrostatic force on the given plate whose top is at the surface of the water if the density of water is $\delta \text{ lbs/ft}^3$?

8. What is the hydrostatic force on a 2 foot by 2 foot square diamond aquarium window whose top is 2 feet below the surface of the water if the density of water is δ lbs/ft³?

- 9. If 0 < r < 1, prove that $\lim_{n \to \infty} r^n = 0$.
- 10. Find the fifteenth partial sum S_{15} for the series $\sum_{n=1}^{\infty} (-1)^{n+1}$.
- 11. Determine whether each series converges or diverges. If it converges, give its sum.

(a)
$$\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^2 + 1}} =$$

(b)
$$\sum_{n=1}^{\infty} \frac{2}{4n^2 - 1} =$$

(c)
$$\sum_{n=1}^{\infty} \frac{2^{n+1}}{3^n} =$$

12. Determine whether each series converges or diverges. State any convergence/divergence tests you use. For the Integral Test, evaluate the appropriate integral. For the Comparison Test or Limit Comparison Test give the appropriate comparison series.

(a)
$$\sum_{n=1}^{\infty} n e^{-n^2}$$

(b)
$$\sum_{n=1}^{\infty} \frac{\ln n}{n^3}$$

(c)
$$\sum_{n=1}^{\infty} \frac{n^2 + 3n + 1}{n^3 + 2n^2 + n + 1}$$

(d)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3 + 2n^2 + n + 1}}$$

(e)
$$\sum_{n=1}^{\infty} \frac{\sin(\frac{1}{n})}{\sqrt{n}}$$