
Math 113-012, Exam 3 Name
28-30 October 2010 Row
D. G. Wright Show work. Each problem or part of problem is worth 5 points.

1. Find the surface area when the line segment from (4, 0) to (16, 5) is rotated about the
y- axis.

2. The curve y =
√

4 − x2,−1 ≤ x ≤ 1, is rotated about the x-axis. Find the area of the
resulting surface.

3. Find the centroid of the following system consisting of a square and an isosceles triangle.
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4. Find the centroid of the region between the two triangles in the x-y plane. You may
use either Hint 1 or Hint 2. Hint 1: The area can be found as the difference of two
areas. In a similar manner, the moment about the x-axis can be found as the difference
of two moments. Hint 2: Use the Theorem of Pappus.
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5. Evaluate the following limits if they exist. If the limit does not exist, so state.

(a) lim
n→∞
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n
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n
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(c) lim
n→∞

√
n5 + 2n3 + 5

n3
=

6. Define
∞

∑

n=1

an = L.

7. What is the hydrostatic force on the given plate whose top is at the surface of the
water if the density of water is δ lbs/ft3?
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8. What is the hydrostatic force on a 2 foot by 2 foot square diamond aquarium window
whose top is 2 feet below the surface of the water if the density of water is δ lbs/ft3?
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9. If 0 < r < 1, prove that lim
n→∞

rn = 0.

10. Find the fifteenth partial sum S15 for the series
∞

∑

n=1

(−1)n+1.

11. Determine whether each series converges or diverges. If it converges, give its sum.
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n
√
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12. Determine whether each series converges or diverges. State any convergence/divergence
tests you use. For the Integral Test, evaluate the appropriate integral. For the Com-
parison Test or Limit Comparison Test give the appropriate comparison series.
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