Math 113-012, Exam 3
28-30 October 2010
D. G. Wright

Name
Row \qquad
Show work. Each problem or part of problem is worth 5 points.

1. Find the surface area when the line segment from $(4,0)$ to $(16,5)$ is rotated about the y - axis.
2. The curve $y=\sqrt{4-x^{2}},-1 \leq x \leq 1$, is rotated about the x-axis. Find the area of the resulting surface.
3. Find the centroid of the following system consisting of a square and an isosceles triangle.

4. Find the centroid of the region between the two triangles in the $x-y$ plane. You may use either Hint 1 or Hint 2. Hint 1: The area can be found as the difference of two areas. In a similar manner, the moment about the x-axis can be found as the difference of two moments. Hint 2: Use the Theorem of Pappus.

5. Evaluate the following limits if they exist. If the limit does not exist, so state.
(a) $\lim _{n \rightarrow \infty} \frac{1}{n}=$
(b) $\lim _{n \rightarrow \infty}\left(1+\frac{5}{n}\right)^{n}=$
(c) $\lim _{n \rightarrow \infty} \frac{\sqrt{n^{5}+2 n^{3}+5}}{n^{3}}=$
6. Define $\sum_{n=1}^{\infty} a_{n}=L$.
7. What is the hydrostatic force on the given plate whose top is at the surface of the water if the density of water is $\delta \mathrm{lbs} / \mathrm{ft}^{3}$?

8. What is the hydrostatic force on a 2 foot by 2 foot square diamond aquarium window whose top is 2 feet below the surface of the water if the density of water is $\delta \mathrm{lbs} / \mathrm{ft}^{3}$?

9. If $0<r<1$, prove that $\lim _{n \rightarrow \infty} r^{n}=0$.
10. Find the fifteenth partial sum S_{15} for the series $\sum_{n=1}^{\infty}(-1)^{n+1}$.
11. Determine whether each series converges or diverges. If it converges, give its sum.
(a) $\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^{2}+1}}=$
(b) $\sum_{n=1}^{\infty} \frac{2}{4 n^{2}-1}=$
(c) $\sum_{n=1}^{\infty} \frac{2^{n+1}}{3^{n}}=$
12. Determine whether each series converges or diverges. State any convergence/divergence tests you use. For the Integral Test, evaluate the appropriate integral. For the Comparison Test or Limit Comparison Test give the appropriate comparison series.
(a) $\sum_{n=1}^{\infty} n e^{-n^{2}}$
(b) $\sum_{n=1}^{\infty} \frac{\ln n}{n^{3}}$
(c) $\sum_{n=1}^{\infty} \frac{n^{2}+3 n+1}{n^{3}+2 n^{2}+n+1}$
(d) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{3}+2 n^{2}+n+1}}$
(e) $\sum_{n=1}^{\infty} \frac{\sin \left(\frac{1}{n}\right)}{\sqrt{n}}$
